Home / Expert Answers / Calculus / use-the-root-test-to-determine-whether-the-series-convergent-or-divergent-pa220

(Solved): Use the Root Test to determine whether the series convergent or divergent. ...



Since \( \lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right| \geq 1 \)
Need Help?
[3/4 Points]
SCALCET9M 11.6.C
UsUse the Root Test to determine whether the series convergent or divergent.

?
 
?5n
n + 1
  3n
 
 
n = 1

 

Evaluate the following limit.

 lim n ? ? 

n  

|an|

 

1anstidy on
Codice:u itha 4vasining fint.
\[
\begin{array}{l}
\lim _{n \rightarrow i} \sqrt[t]{||_{a} \mid} \\
\frac{1}{1 \ma

Since \( \lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right| \geq 1 \) Need Help? [3/4 Points] SCALCET9M 11.6.C Use the Root Test to determine whether the series convergent or divergent: \[ \sum_{n=1}^{\infty}\left(\frac{-5 n}{n+1}\right)^{3 n} \] Identify \( a_{n} \). \[ 5^{3 n}\left(-\frac{n}{n+1}\right) 3 n \] Evaluate the following limit. \[ \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} \] \[ \frac{1}{\left(1+\frac{1}{n}\right)^{125}} \] Since \( \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}, 1 \) 1anstidy on Codice:u itha 4vasining fint. \[ \begin{array}{l} \lim _{n \rightarrow i} \sqrt[t]{||_{a} \mid} \\ \frac{1}{1 \mathrm{k}-\frac{\mathrm{t}}{\mathrm{m}} / 1 \mathrm{t}} \\ \text { Binde } \operatorname{len}_{x \rightarrow \infty}+\sqrt{\mid t_{+}} \quad \text { of } \\ \end{array} \]


We have an Answer from Expert

View Expert Answer

Expert Answer


Cauchy's Root Test: If ?n=1?an be a series of positive terms
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe