Home / Expert Answers / Calculus / use-the-divergence-theorem-to-calculate-the-surface-integral-nbsp-nbsp-pa697

(Solved): Use the Divergence Theorem to calculate the surface integral    ...



\( \mathrm{F}(x, y, z)=x^{2} \sin (y) i+x \cos (y) i-x z \sin (y) \boldsymbol{k}, \mid \)
\( S \) is the fat sphere  \( x^{

Use the Divergence Theorem to calculate the surface integral 

 
S

F · dS;

 that is, calculate the flux of F across S.

F(x, y, z) = x2 sin(y)i + x cos(y)j ? xz sin(y)k,


S is the "fat sphere" 

x8 + y8 + z8 = 125.

\( \mathrm{F}(x, y, z)=x^{2} \sin (y) i+x \cos (y) i-x z \sin (y) \boldsymbol{k}, \mid \) \( S \) is the "fat sphere " \( x^{8}+y^{8}+z^{8}=125 \). \( \iint_{S} \mathrm{~F} \cdot d S= \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Given: F(x,y,z)=x2sin?yi^+x
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe