SOLVE USING PYTHON!!!
???????SOLVE USING PYTHON!!!
SOLVE USING PYTHON!!!???????


Find the eigenvalues and eigenvectors for the below matrix. Print out the eigenvalues sorted y descending value and explicitly show that eigenvalues/eigenvector pairs satisfy \( A x=\lambda x \). H \( \quad 1 \quad \mathbf{A}=\mathrm{np} . \operatorname{array}([[1,4,5],[4,5,4],[6,7,9]]) \)
Without using NumPy's la.eig() (or similar functions), find the 4 eigenvalues and eigenvectors of the following matrix. Hint: Use the power method for the max eigenvalue (given below in MaxEigenvalue ), the power method applied to the inverse for the smallest eigenvalue, and apply Hotelling's deflation twice to find the second and third eigenvalues/eigenvectors.