Q2. For a DC power two-wire distribution circuit as shown below, \( \mathrm{V}_{\mathrm{g}}=124 \mathrm{~V}_{\mathrm{t}} \mathrm{R}_{1}=1 \Omega, \mathrm{R}_{2}=0.5 \Omega, \mathrm{R}_{3}=0.55 \Omega, \mathrm{R}_{\mathrm{a}}=130 \Omega, \mathrm{R}_{\mathrm{b}}=230 \Omega, \mathrm{R}_{\mathrm{c}}=60 \Omega \). (a) Solve the node equations for \( V_{a}, V_{b} \), and \( V_{c} \). \( \begin{array}{ll}\mathrm{V}_{\mathrm{a}}: & \\ \mathrm{v}_{\mathrm{b}}: \\ \mathrm{v}_{\mathrm{c}}: & \\ & \text { Tries } 0 / 5\end{array} \) (b) Solve the mesh equations for \( \mathrm{I}_{1}, \mathrm{I}_{2} \), and \( \mathrm{I}_{3} \) \( I_{1} \) : (A) \( I_{2}: \quad \) (A) \( \mathrm{I}_{3} \) : (V) (V) (V) Tries 0/6 (c) Calculate the total supplied power in \( \mathrm{W} \) (W) Tries 0/3 (d) Calculate the total power in \( W \) delivered to the load resistors \( R_{a}, R_{b} \), and \( R_{c} \) Pload: (W) Tries 0/3 (e) Calculate the total power loss in \( W \) consumed on transmission resistors \( R_{1}, R_{2} \), and \( R_{3} \) \( \mathrm{P}_{\text {loss }} \) : (W) Tries 0/3 (f) Calculate the power efficiency for this system, which is the ration between the load power and the total input power. \( (\%) \) Tries 0/3