Fibonacci numbers: The Fibonacci numbers are the numbers in the following integer sequence. \( 0,1,1,2,3,5,8,13,21,34,55,89,144, \ldots \ldots . \). In mathematical terms, the sequence \( F \) of Fibonacci numbers is defined by the recurrence relation \[ \mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{n}-1}+\mathrm{F}_{\mathrm{n}-2} \] with seed values \[ \mathrm{F}_{0}=0 \text { and } \mathrm{F}_{1}=1 . \] Algorithm: implement using a list size of two as in stack \( =[0,1] \). \( \operatorname{stack}=[0,1] \) loop 11 times: print stack let last \( = \) stack.top
loop 11 times: print stack let last \( = \) stack.top let fab = last + stack.top-1 stack push last stack push fab print stack Output: \( [0,1] \) \( [1,1] \) \( [1,2] \) \( [2,3] \) \( [3,5] \) \( [5,5] \) \( [8,13] \) \( [13,21] \) \( [21,34] \) \( [34,55] \) \( \left.\begin{array}{ll}{[55,} & 89\end{array}\right] \)