KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY INSTITUTE OF DISTANCE LEARNING FACULTY OF PHYSICAL AND COMPUTATIONAL SCIENCES DEPARTMENT OF MATHEMATICS B.Sc. Electrical / Mechanical Engineering Pre Bridging Math 152 Calculus Assignment (Answer all questions) 1. Define a deleted \( \frac{1}{2}- \) neighbourhood of 2 . 2. How many cluster points does the interval \( (-1,2) \) have? 3. Given that \( A=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots\right\} \), find the (a) lower bound of \( A \). (b) greatest lower bound of \( A \). (c) upper bound of \( \mathrm{A} \). (d) least upper bound of \( \mathrm{A} \). 5. Find the cluster point(s) of \( 1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, 1, \frac{1}{5} \ldots \) 6. If \( T=\left\{\frac{1}{5^{n}}: n=0,1,2,3 \ldots\right\} \), then \( T \) is closed? A. True B. False 7. Find the limit point(s) of \( a_{n}=1+(-1)^{n}+\frac{1}{n} \) 8. The set \( T=\{1,2,3,4,5\} \) has no cluster point. A. True B. False 9. Let \( U_{n}=\frac{n+3}{2 n+1} \) (a) Prove that the sequence \( \left\{U_{n}\right\} \) is i. bounded ii. monotonic decreasing. 10. Evaluate the following: (a) \( \lim _{n \rightarrow \infty}\left(\frac{5 n^{2}+3 n+3}{2-n+7 n^{2}}\right) \) (b) \( \lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}\left(\frac{n^{2}-1}{n^{2}}\right)\right) \) (c) \( \left.\lim _{n \rightarrow \infty}\left(5 \sqrt{\left(1+\frac{1}{n^{2}}\right.}\right)\right) \) (d) \( \lim _{n \rightarrow \infty}\left(\frac{\sqrt{3 n^{2}-4 n+5}}{n+1}\right) \)