DIGITAL DESIGN 1 exam \( 19 / 12 / 2022 \) 1. Convert this algebraic expression to the simplest form! [10 point] \( \left(A^{\prime} \cdot B^{\prime} \cdot C^{\prime}+A \cdot B^{\prime} \cdot C^{\prime}+A^{\prime} \cdot B^{\prime} \cdot C+A^{\prime} \cdot B \cdot C^{\prime}\right)^{\prime} \) 2. The \( F 1 \) and \( F 2 \) functions depend on 4 variables. [10 points] \[ \begin{array}{l} F 1(A, B, C, D)=\left(A^{\prime}+B\right) \cdot\left(B+C^{\prime}+D\right) \cdot\left(B^{\prime}+D^{\prime}\right) \\ F 2(A, B, C, D)=B^{\prime} \cdot D^{\prime}+A^{\prime} \cdot B+C^{\prime} \cdot D \end{array} \] Fill in K-maps for \( F 1 \) and \( F 2 \), show the "bubbles" of the prime-implicants ! CS Scanned with CamScanner
2. The \( F 1 \) and \( F 2 \) functions depend on 4 variables. [10 points] \[ \begin{array}{l} F 1(A, B, C, D)=\left(A^{\prime}+B\right) \cdot\left(B+C^{\prime}+D\right) \cdot\left(B^{\prime}+D^{\prime}\right) \\ F 2(A, B, C, D)=B^{\prime} \cdot D^{\prime}+A^{\prime} \cdot B+C^{\prime} \cdot D \end{array} \] Fill in K-maps for F1 and F2, show the "bubbles" of the prime-implicants! Scanned with CamScanner