(Solved):
\[ \left\{X_{t}, t \in \mathbb{Z}_{\}}\right\} \] be a zero mean process. Define \[ Y_{t}=\left\{\ ...
\[ \left\{X_{t}, t \in \mathbb{Z}_{\}}\right\} \] be a zero mean process. Define \[ Y_{t}=\left\{\begin{array}{ll} X_{t} & \text { teven } \\ X_{t}+1 & \text { todd } \end{array}\right. \] (i) The mean function of \( Y_{t} \) is constant over \( \mathrm{t} \).
True False