Home / Expert Answers / Computer Science / i-need-explanation-nbsp-and-correction-to-these-questions-q-2-the-negation-of-p-wedge-q-pa508

(Solved): I need explanation  and correction to these questions Q-2: The negation of \( (P \wedge Q) \ ...



I need explanation  and correction to these questions

Q-2: The negation of \( (P \wedge Q) \rightarrow R \) is
a) \( \neg(P \wedge Q) \rightarrow \neg R \)
b) \( \neg R \rightarro15: Suppose that \( R \) is an equivalence relation on \( A=\{1,2,3,4,5\} \). Which of the following could be a partition of Q-1: If \( S \) is a set such that \( |S|=3 \), then \( |P(S)|= \)
a) 9
b) 8
c) 6
d) 3
e) None of the above
Q-2: The contrapoQ-1: [8+8 marks]
a) Determine whether each of the following is TRUE or FALSE:
i. \( 1+2=5 \) if and only if \( 3-1=1 \). F
iiproduct of \( A \) and \( B \).
b) Using the encrypting function \( f(p)=(p+10) \bmod 26,0 \leq p \leq 25 \), encrypt the mes

Q-2: The negation of \( (P \wedge Q) \rightarrow R \) is a) \( \neg(P \wedge Q) \rightarrow \neg R \) b) \( \neg R \rightarrow \neg(P \wedge Q) \) c) \( R \rightarrow(P \wedge Q) \) d) \( P \wedge Q \wedge \neg R \) e) None of the above 15: Suppose that \( R \) is an equivalence relation on \( A=\{1,2,3,4,5\} \). Which of the following could be a partition of \( A \) arising from \( R \) ? a) \( \{1,2\},\{3,4\} \chi \quad \stackrel{\varnothing}{\downarrow}\{1,2,3,4,5\} \) c) \( \{1,2,3,4\} \times \) d) \( \{1\},\{2,3\},\{3,4,5\} \chi \) e) None of the above \( A_{i} \cap A_{j}=\varnothing \) \( \cup A_{i^{\prime}}=A \) 16: The maximal element of the poset \( (P(A), \subseteq), A=\{1,2,3\} \), is a) 3 b) \( \{3\} \) c) \( \{\{3\}\} \) d) \( \{1,2,3\} \) e) None of the above Q-1: If \( S \) is a set such that \( |S|=3 \), then \( |P(S)|= \) a) 9 b) 8 c) 6 d) 3 e) None of the above Q-2: The contrapositive of \( (P \wedge Q) \rightarrow \neg R \) is a) \( R \rightarrow \neg P \wedge \neg Q \) b) \( \neg(P \wedge Q) \rightarrow R \) c) \( R \rightarrow \neg P \vee \neg Q \) d) \( \neg P \vee \neg Q \rightarrow R \) e) None of the above Q-3: If \( a \equiv 7 \bmod 13 \), then \( a \) may equal a) 0 b) 14 c) 19 d) \( -19 \) e) None of the above Q-4: If \( A=\{1,2,3\} \) and \( B=\{4,5,6\} \), then \( A \oplus B= \) a) \( \Phi \) b) \( \{1,2,3\} \) c) \( \{4,5,6\} \) d) \( \{1,2,3,4,5,6\} \) e) None of the above Q-5: The hexadecimal representation of \( (1101101)_{2} \) is a) \( 6 \mathrm{D} \) b) D5 c) 155 d) 551 Q-1: [8+8 marks] a) Determine whether each of the following is TRUE or FALSE: i. \( 1+2=5 \) if and only if \( 3-1=1 \). F ii. \( 3 \mid 19 \) or \( 14 \equiv 23(\bmod 4) \). iii. \( x+5>9 \) for every real number \( x \). F iv. \( \neg \exists x(2 x=x) \), domain is the set of integers. b) Show that the statement \( \neg((P \wedge \neg Q) \rightarrow P \vee Q) \) is a contradiction using: i. Truth table. solved ii. Logic laws. Q-2: [4+6+6 marks] a) Find the bit-wise XOR of strings 11010011 and 10111010 . 01101001 b) Let \( B(x), E(x) \) and \( G(x) \) be the statements " \( x \) is a book" " \( x \) is expensive" and " \( x \) is good" respectively. Express each of the following statements using quantifiers and logical connectives, where the universe of discourse is the set of all objects: i. All expensive books are good. " will used A instead the quantifiers "All", and E instead of "Some" ii. Some good books are not expensive. \( \quad E E(x) E(x)=\in(x) \) c) Show that \( (B-A) \cup(C-A)=(B \cup C)-A \). Need to be solved Q-3: [6+4+6 marks] a) Find \( a, b \) and \( c \) if \( \left\{\begin{array}{l}a=43 \operatorname{div} 6 \\ a+b=-51 \bmod 6 . \\ a+c=64 \bmod 8 \\ c=4 \\ b=1\end{array}\right. \) b) Let \( a=2^{3} \cdot 3^{2} \cdot 5 \) and \( b=2^{2} \cdot 3^{3} \cdot 7^{2} \). Find \( \operatorname{GCD}(a, b) \) and \( \operatorname{LCM}(a, b) \). \( \mathrm{acD}=32 \) \( \operatorname{LCM}=7560 \) c) Are the numbers 96 and 175 relatively primes? Explain. NO, both of then accept division. \( 96 / 3 \) and \( 175 / 5 \) product of \( A \) and \( B \). b) Using the encrypting function \( f(p)=(p+10) \bmod 26,0 \leq p \leq 25 \), encrypt the message "DEAR DOCTOR". product of \( A \) and \( B \). b) Using the encrypting function \( f(p)=(p+10) \bmod 26,0 \leq p \leq 25 \), encrypt the message "DEAR DOCTOR".


We have an Answer from Expert

View Expert Answer

Expert Answer


Hey mate here is your answer ????????... Hope you would like it... Answer 2 d) P ^ Q ^ ¬R Answer 15 Equivalence relations on a set A are recursive, symmet
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe