Hess's law of constant heat summation example, you can calculate the reaction enthalpy for the combustion of solid sulfur, \( \mathrm{S}(s) \), to form \( \mathrm{SO}_{3} \) gas: \[ \mathrm{S}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g) \] The combustion of solid sulfur to form \( \mathrm{SO}_{3} \) gas occurs in the two steps. Step 1: \( \mathrm{S}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g), \Delta H=-297 \mathrm{~kJ} \mathrm{~mol}^{-1} \). Step 2: \( \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g), \Delta H=-99 \mathrm{~kJ} \mathrm{~mol}^{-1} \). both sides of a reaction arrow is cancelled from both sides of the equation. Thus, by adding step 1 and step 2, you can obtain the reaction enthalpy for the overall reaction: \[ \begin{array}{c} \mathrm{S}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g), \quad \Delta H=-297 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ + \\ \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g), \quad \Delta H=-99 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ \mathrm{~S}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g), \quad \Delta H=-396 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{array} \] Hence, the reaction enthalpy for the overall reaction is \( -297 \mathrm{~kJ} \mathrm{~mol}^{-1}+\left(-99 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)=-396 \mathrm{~kJ} \mathrm{~mol}^{-1} \).
Click on the button within the activity and use the example shown to calculate the reaction enthalpy, \( \Delta H \), for the following reaction: \[ \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \] Use the series of reactions that follow: 1. \( \mathrm{C}(s)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{CH}_{4}(g), \Delta H=-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \). 2. \( \mathrm{C}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \). 3. \( 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g), \Delta H=-484.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \). 4. \( \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(g), \Delta H=44.0 \mathrm{~kJ} \mathrm{~mol}^{-1} \). Express your answer with appropriate units.