Home / Expert Answers / Calculus / find-the-unit-tangent-vector-of-the-given-curve-begin-aligned-mathbf-r-mathrm-t-9-le-pa987

(Solved): Find the unit tangent vector of the given curve. \[ \begin{aligned} \mathbf{r}(\mathrm{t})=(9 & \le ...





Find the unit tangent vector of the given curve.
\[
\begin{aligned}
\mathbf{r}(\mathrm{t})=(9 & \left.+2 \mathrm{t}^{4}\right
Find the unit tangent vector of the given curve. \[ \begin{aligned} \mathbf{r}(\mathrm{t})=(9 & \left.+2 \mathrm{t}^{4}\right) \mathbf{i}+\left(8+10 \mathrm{t}^{4}\right) \mathbf{j}+\left(2+11 \mathrm{t}^{4}\right) \mathbf{k} \\ \mathbf{T} & =2 \mathbf{i}+10 \mathbf{j}+11 \mathbf{k} \\ \mathbf{T} & =\frac{8}{15} \mathbf{i}+\frac{8}{3} \mathbf{j}+\frac{44}{15} \mathbf{k} \\ \mathbf{T} & =\frac{2}{225} \mathbf{i}+\frac{2}{45} \mathbf{j}+\frac{11}{225} \mathbf{k} \\ \mathbf{T} & =\frac{2}{15} \mathbf{i}+\frac{2}{3} \mathbf{j}+\frac{11}{15} \mathbf{k} \end{aligned} \]


We have an Answer from Expert

View Expert Answer

Expert Answer


The given curve is r(t)=(9+2t4)i+(8+10t4)j+(2+11t4)k. The unit tangent vector is T(t)=r(t)||r?(t)|| Differentiating the given equation with respect to
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe