Home /
Expert Answers /
Algebra /
find-the-matrix-of-the-linear-transformation-mathrm-t-with-respect-to-the-bases-given-a-pa917
(Solved):
Find the matrix of the linear transformation \( \mathrm{T} \) with respect to the bases given: a) ...
Find the matrix of the linear transformation \( \mathrm{T} \) with respect to the bases given: a) \( T: M_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R}) \), defined via \( T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+(b+c) x+d x^{2} \), with respect to the basis \[ \left(\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right),\left(\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right),\left(\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right) \] of \( M_{2}(\mathbb{R}) \) and the basis \( \left\{x, 1+x, x^{2}\right\} \) of \( P_{2}(\mathbb{R}) \). b) \( T: P_{2}(\mathbb{R}) \rightarrow P_{4}(\mathbb{R}) \) defined via \( T(p)(x)=x^{2} p(x)+x^{2} p^{\prime}(x) \), with respect to the basis \( \left\{3,2-x, 1+x+x^{2}\right\} \) of \( P_{2}(\mathbb{R}) \) and the basis \( \left\{1, x, x^{2}, x^{3}, x^{4}\right\} \) of \( P_{4}(\mathbb{R}) \). c) \( T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R}) \) defined by \( T(C)=B C \), where \( B=\left(\begin{array}{cc}0 & -3 \\ 1 & 1\end{array}\right) \), with respect to the basis \[ \mathcal{X}=\left\{\left(\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right)\left(\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right)\left(\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array}\right)\right\} \] in both the domain and codomain.
(a) Given linear transformation is defined by Now, given basis for is and basis for is Since the dimension of the basis for and are respectively, so the order of the matrix representation wou