Home / Expert Answers / Statistics and Probability / fill-out-the-table-below-and-use-the-totals-to-obtain-the-values-of-b1-b0-and-r2-use-the-formulas-pa634

(Solved): Fill out the table below and use the totals to obtain the values of B1, B0 and R2. Use the formulas ...



Fill out the table below and use the totals to obtain the values of B1, B0 and R2. Use the formulas provided below for your estimates.
HELP !!!

(a) Fill out the table below and use the totals to obtain the values of \( \hat{\beta}_{1}, \hat{\beta}_{0} \) and \( R^{2} \
\( r^{2}=\frac{\sum(\hat{y}-\bar{y})^{2}}{\sum(y-\bar{y})^{2}}=\frac{S S R}{S S T} \)
\( R^{2}=\frac{\sum_{i}\left(\hat{y}_{i
(a) Fill out the table below and use the totals to obtain the values of \( \hat{\beta}_{1}, \hat{\beta}_{0} \) and \( R^{2} \). Use the formulas provided below for your estimates. \( r^{2}=\frac{\sum(\hat{y}-\bar{y})^{2}}{\sum(y-\bar{y})^{2}}=\frac{S S R}{S S T} \) \( R^{2}=\frac{\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}=1-\frac{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}} \) \( \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \) \( \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x} \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Solution: We have to fill out the table . First calculate mean for x and y: Total observations , n=11 From table: ?xi=99,?yi=82.51 Mean: x?=?xin=9911=
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe