
Consider the single line diagram of the power system shown below. Equipment rating are given below the figure. Generator 1: Generator 2: Synchronous motor 3 : Three-phase \\( \\Delta-Y \\) transformers \\( \\mathrm{T}_{1}, \\mathrm{~T}_{2}, \\mathrm{~T}_{3}, \\mathrm{~T}_{4} \\) : Three-phase \\( Y \\) \\( Y \\) transformer \\( T_{4} \\) : \\( 1000 \\mathrm{MV} \\Omega .18 \\mathrm{kV}, \\mathrm{X}^{v}= \\) 0.2 per unit IOCO MVA, I8 kV, \\( \\mathrm{X}^{\\mathrm{v}}=0.2 \\) p.e. \\( 1500 \\mathrm{MVA}, 20 \\mathrm{kV}, \\mathrm{X}=0.2 \\mathrm{pu} \\). \\( 1000 \\mathrm{MVA}, 500 \\mathrm{kV} \\mathrm{Y/20} \\mathrm{kV} \\Delta \\), \\( \\mathrm{X}=0.1 \\mathrm{pu} \\). \\( 1500 \\mathrm{MVA}, 500 \\mathrm{kV} \\) V/20 kV Y, \\( \\mathrm{x}=0.1 \\mathrm{pu} \\). (a) Neglecting resistance, transformer phase shift, and magnetizing reactance, do the following. Draw the equivalent reactance diagram. Use the base of \\( 100 \\mathrm{MVA} \\) and 500 \\( \\mathrm{kV} \\) for the \\( 50 \\Omega \\) line. (b) If the synchronous motor absorbs \\( 1500 \\mathrm{MW} \\) at 0.8 power factor leading with the bus 3 voltage at \\( 18 \\mathrm{kV} \\). Determine the bus 1 and bus 2 voltages in kV. Assume that Generators 1 and 2 deliver equal real powers and equal reactive powers. Also assume the system is a balance system.