Home / Expert Answers / Precalculus / can-someone-explain-the-solution-in-details-thx-verifying-an-identity-using-algebra-and-even-odd-ide-pa684

(Solved): can someone explain the solution in details thx Verifying an Identity Using Algebra and Even/Odd Ide ...



can someone explain the solution in details thx

Verifying an Identity Using Algebra and Even/Odd Identities
Verify the identity:
\[
\frac{\sin ^{2}(-\theta)-\cos ^{2}(-\thet
Verifying an Identity Using Algebra and Even/Odd Identities Verify the identity: \[ \frac{\sin ^{2}(-\theta)-\cos ^{2}(-\theta)}{\sin (-\theta)-\cos (-\theta)}=\cos \theta-\sin \theta \] [Show/Hide Solution] Solution Let's start with the left side and simplify: \[ \begin{aligned} \frac{\sin ^{2}(-\theta)-\cos ^{2}(-\theta)}{\sin (-\theta)-\cos (-\theta)}=\frac{[\sin (-\theta))^{2}-[\cos (-\theta)]^{2}}{\sin (-\theta)-\cos (-\theta)} \\ &=\frac{(-\sin \theta)^{2}-(\cos \theta)^{2}}{-\sin \theta-\cos \theta} \\ &=\frac{(\sin \theta)^{2}-(\cos \theta)^{2}}{-\sin \theta-\cos \theta(\sin \theta+\cos \theta)} \\ &=\frac{(\sin \theta-\cos \theta)(-x)=-\sin x \text { and } \cos (-x)=\cos }{-(\sin \theta+\cos \theta)} \\ &=\frac{(\sin \theta-\cos \theta(\sin \theta-\cos \theta)}{-(\sin \theta+\cos \theta)} \\ & \text { Difference of squares } \\ &=\cos \theta-\sin \theta \end{aligned} \]


We have an Answer from Expert

View Expert Answer

Expert Answer


Solution ²² sin?²(??)?cos?²(??)sin?(??)?cos?(??)=cos???sin?? start on the left side ²² sin?
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe