Angular Momentum Analysis Master equation: Equation for this situation: Questions 1. Percent error acceleration 2. Percent error velocity 3. Percent error velocity 4. Error comparison
Report Sheet The Rolling Can Remember to complete all calculations in kg,m,s,N and J! Also include complete calculations: equation, numbers in equation, answer with a unit. Data: Can mass: .425 kg Can diameter: .08 m Can radius: .04 m Ramp length: .76m Ramp height: .04 m Level surface distance: .76 m Trial 2 Trial 3 Average Time on the ramp: 3.022.83??3.26 2.97 Time on level surface: 4.61 4.68 4.78 4.69 sec Calculate the following Torque: Moment of inertia: Angular acceleration Translational acceleration
1) Moment of Inertia (I) I=21?mr2[ fon rolling can/dise] I=21?×0.425×(0.04)2I=3.4×10?4Kg?m2? 2) Translational aculeration (a). From equation (4), a=32?gsin?. From equation (5), sin?=0.052a=32?×9.81×0.052a=0.340 m/s2? 3) Angular accelecation (?) ?=?a?=0.040.340?
- Given datas, can mass, m=0.425 kg. Can iadus, ?=0.04 m Ramp length =0.76 m(1) Ramp height =0.04 m( h) Level surfoce distance =0.76 m - Fnom the diagram, Net fance al ong the ramp, F?=mgsin??Fr?? ( ) We know that, Net fanie = ma [Newten's selend law if motien ?F?=ma?mgsin??Fr?=ma? - Tonque applied by the frictional fince, T=F1?×iO ? (II)
But, ?=I×?I? moment of inertia also, a=?xr ?=?d???=?Ia? (B) ? comparing equation (A) and (B), We g(t,rIa?=Frr?) - For the disc, I=21?mr2 [Fon can dse] So, 2?m?2a?=F??x?F??=2ma?? (3) ? (omparing equations (2) and (3), We get, mgsin??2ma?=ma ??gsin?=23?aa=32?gsin?? - Fnom the figure,