Home /
Expert Answers /
Advanced Math /
all-parts-with-detail-explanation-show-if-z-x-z-is-a-a-ring-a-commutative-ring-b-an-integr-pa492
(Solved): all parts with detail explanation Show if \( Z x Z \) is a. A ring? A commutative ring? b. An integr ...
all parts with detail explanation
Show if \( Z x Z \) is a. A ring? A commutative ring? b. An integral domain? c. 'A field? \[ \begin{array}{l} \forall(n, m),\left(n^{\prime}, m^{\prime}\right) \in Z^{2} \\ +:(n, m)+\left(n^{\prime}, m^{\prime}\right)=\left(n m^{\prime}+n^{\prime} m, m m^{\prime}\right) \in Z^{2} \\ \times:(n, m) \times\left(n^{\prime}, m^{\prime}\right)=\left(n n^{\prime}, m m^{\prime}\right) \in Z^{2} \end{array} \]