Home / Expert Answers / Advanced Math / 5-phi-mathbb-z-2-mathbb-z-longrightarrow-operatorname-aut-mathbb-z-is-defined-pa800

(Solved): 5. \( \phi: \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}) \) is defined ...




5. \( \phi: \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}) \) is defined by
\[
\begin{array}{c}
\ph
5. \( \phi: \mathbb{Z} / 2 \mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z}) \) is defined by \[ \begin{array}{c} \phi(\bar{m}): \mathbb{Z} \longrightarrow \mathbb{Z} \\ k \mapsto(-1)^{m} k \end{array} \] Let \( G=\mathbb{Z} \rtimes_{\phi}(\mathbb{Z} / 2 \mathbb{Z}) \). Find all the elements of finite order in \( G \).


We have an Answer from Expert

View Expert Answer

Expert Answer


According to the given condition G=Zx??(z2×z
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe