Home /
Expert Answers /
Advanced Math /
5-1-identity-for-rotations-in-terms-of-euler-angles-let-be-euler-angles-that-is-r-pa914
(Solved):
5.1- Identity for rotations in terms of Euler angles Let (,,) be Euler angles, that is, R^( ...
5.1- Identity for rotations in terms of Euler angles Let (?,?,?) be Euler angles, that is, R^(?,?,?)=exp(?i?J^z2??)exp(?i?J^z?)exp(?i?J^y?) where the subscripts (x,y,z) denotes axes in the lab frame, z2? is the z axis after the rotations by ? and ?, and ?=1. (a) Show that if J^z1??=exp(?i?J^y?)J^z?exp(i?J^y?), then exp(?i?J^z1??)=exp(?i?J^y?)exp(?i?J^z?)exp(i?J^y?), where ? is some arbitrary angle. Hint: First show that J^z1?n?=exp(?i?J^y?)J^zn?exp(i?J^y?) and then expand the exponential exp(?i?J^z?). (b) Use the result of (a) to show that if J^z2??=exp(?i?J^z?)exp(?i?J^y?)J^z?exp(i?J^y?)exp(?i?J^z?) then exp(?i?J^z2??)=exp(?i?J^z?)exp(?i?J^y?)exp(?i?J^z?)exp(i?J^y?)exp(i?J^z?). (c) Use the result of (b) to show that R^(?,?,?)=exp(?i?J^z?)exp(?i?J^y?)exp(?i?J^z?) where all rotations are about the lab frame axes.