Home / Expert Answers / Statistics and Probability / 2-suppose-we-roll-a-die-3600-times-let-xi-be-the-number-showing-on-the-ith-roll-let-sn-x-pa487

(Solved): 2) Suppose we roll a die 3600 times. Let Xi be the number showing on the ith roll. Let Sn=X ...



2) Suppose we roll a die 3600 times. Let \( X_{i} \) be the number showing on the \( i^{\text {th }} \) roll. Let \( S_{n}=X_
2) Suppose we roll a die 3600 times. Let be the number showing on the roll. Let . By the law of large number, we know that will be close to 3.5 . Approximate the probability that differs from 3.5 by more than 0.05 . Either write a numerical answer or leave it in terms of if you use normal approximation. 3) Let be i.i.d. (independent and identically distributed) exponential random variable with parameter . Approximate Your answer can be either numerical or in terms of . 4) Suppose that the checkout time at the Art of Espresso has a mean of 5 minutes and a standard deviation of 2 minutes. Estimate the probability to serve at least 36 customers during a 3-hour and a half shift.


We have an Answer from Expert

View Expert Answer

Expert Answer





(2) To approximate the probability that Sn/n differs from 3.5 by more than 0.05, we can use the normal approximation. The sum of the rolls, Sn, follows approximately a normal distribution with mean ? = n * 3.5 and variance ?^2 = n * (1^2/6).

The rand...
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe